China Hot selling 3000kg 6t 8t Small Electric Crawler Spider Crane with Safety Torque Limiter

Product Description

3000kg 6t 8t Small Electric Good Quality Crawler Spider Crane with Safety Torque Limiter

Product Description

Belift Brand Crawler Spider Crane combines the space-saving qualities of a spider crane with the powerful lifting capabilities of a pick-and-carry crane inside 1 practical machine. This compact equipment offers an alternate solution to the difficulties associated with lifting in areas with restricted access.

The 8ton spider crane is a masterpiece of engineering, providing reliable lifting solutions for heavy loads in areas with difficult access. Its compact and lightweight design allows it to fit in tight spaces and its 4 stabilizing legs provide stability and support on uneven terrain. Equipped with hi-tech controls, the crane operates smoothly and efficiently, making it easy to use for operators of all levels. With its impressive features and versatility, the 8ton spider crane is a valuable asset to any workforce.

Features & Advantages:
The MINI spider crane is an innovative and versatile piece of equipment that is designed with efficiency and productivity in mind. This compact and maneuverable crane is perfect for those hard-to-reach areas where traditional cranes cannot access.

Despite its small size, the MINI spider crane has a lifting capacity of up to 6 tons, making it perfect for a wide range of jobs. Its powerful boom and extensive reach allow it to lift heavy loads with ease, while its compact size makes it perfect for working in tight spaces.

The MINI spider crane is also incredibly easy to operate, with its user-friendly controls and intuitive design allowing operators to quickly and effectively carry out tasks with minimal training or experience. It is also very safe to use, with a range of innovative safety features ensuring that operators and bystanders are kept out of harm’s way at all times.

What’s more, the MINI spider crane is incredibly versatile, with its compact design allowing it to be used in a wide variety of settings, from construction sites and industrial facilities to warehouses, factories, and even domestic settings.

Overall, the MINI spider crane is a fantastic piece of equipment that offers a range of benefits and advantages. Whether you need to lift heavy loads in tight spaces or require a versatile and powerful crane for a range of different tasks, the MINI spider crane is sure to meet all of your needs and exceed your expectations.

Product Parameters

Model Type BL2.0C BL3.0C BL5.0C BL8.0C BL12.0C
Load capacity 2 ton 3 ton 5 ton 8 ton 12 ton
Lifting Height 5.98m 9.9m 16.8m 18.5m 23.5m
Max operating radius 4.7m×0.4t 8.6m×0.4t 15.3m×0.5t 16.8m×0.35t 21.3m×0.5t
Walking device Walking mode Hydraulic motor drive, 2 speed
  Walking speed 0-2.0km/h 0-2.5km/h 0-2.5km/h 0-2.5km/h 0-3km/h
  Climbing ability 20°(36%)
Engine Start mode Electric start
  Startup Tempt. -5°C~40°C
  Engine AC Electric + Diesel Dual Power
  Battery capacity 12v 45AH 12v 45AH 12v 45AH 12v 45AH 24v 45AH
Weight(KG) 2000kg 2500kg 6500kg 7800kg 11500kg
Vehicle Size(e( L*W*H)(m) 2.2 * 0.95 *1.65 2.95*0.98*1.56 4.75 *1.5 * 2.2 5 *1.6 * 2.2 5.7*1.8* 2.4
Packing Size (m) 2.4*1.2*1.9 3.1*1.2*1.9 1*20ft GP 1*20ft GP 1*20ft GP
20ft container loading Qty 3 sets 2 sets 1 set 1 set 1 set

Detailed Photos

Company Profile

Since 2015, ZheJiang Belift Machinery Co.,Ltd has grown into the leading manufacturer specialised in providing the efficient, reliable and safe indoor aerial wok plat-forms in global business. Based on our knowledge of construction worksites and the multiple applications of the access equipment, we have designed 6 different ranges: Single mast lift AWP Series, Dual masts lift DPL Series, Self propelled mast lift AMWP Series, Self propelled telescopic mast series ASWP Series, Mini Mobile scissor lift MMS Series and Mini self propelled scissor lift MSS Series. As a specialist of indoor aerial work equipment, we continue where others stop.From the selection of each component, the design of utility and beauty, to the perfect after-sales service,Belift guarantees the customers to obtain the best quality service. Now Belift takes”Promote the development of global indoor aerial work, ensure indoor work safety, and improve indoor work efficiency”for the mission,”To be the global leader in indoor aerial work equipment”for the vision, Starting from the perspective of customers, and keeping innovating and improving.

 

Certificate: CE, ROHS, SGS, ISO etc.

Welcome to visit us and negotiate business. We will pick up you and arrange the accommodation.
Dealers and Wholesalers are especially welcomed and we will give special discounts.

Our Advantages

1.Adopting perfect shot blasting treatment and anti corrosion paint spraying, it is beautifal in apperance.
2. Unique design for Compact structure,it is strong enough to support the loading.
3. Produced by automatic production line and the quality is highly guaranteed.
4. High strengthened steel structures, smoothly lift up and drop down, easily operated, very few faults.
5. Power sources: customised as per the local standards

After Sales Service

1.Spare parts provided freely within quality warranty.
2. Providing user’s manual.
3.Liftetime techinique support.
4.24 hours telephone and Internet service

FAQ

1. Are you a factory or trading company?
Yes, we’re factory with over 10 years exporting experience.
2. What’s the MOQ?
1 UNIT
3. Do you offer OEM&ODM service?
Yes, like lifting capacity, lifting height, size of platform, painting color, logo, manual etc.
4. What’s the quality warranty?
24 months. Spare parts provided freely within quality warranty.
5. How can I get the after-sales service?
We offer Videos, Pictures, User Manual, Technical guidance and 24 hours online service
6. What’s your QA&QC policy?
100% Test before shipping.

/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

Can you provide guidance on the selection of injection molded materials based on application requirements?

Yes, I can provide guidance on the selection of injection molded materials based on application requirements. The choice of material for injection molding plays a critical role in determining the performance, durability, and functionality of the molded parts. Here’s a detailed explanation of the factors to consider and the guidance for selecting the appropriate material:

1. Mechanical Properties:

Consider the mechanical properties required for the application, such as strength, stiffness, impact resistance, and wear resistance. Different materials have varying mechanical characteristics, and selecting a material with suitable properties is crucial. For example, engineering thermoplastics like ABS, PC, or nylon offer high strength and impact resistance, while materials like PEEK or ULTEM provide exceptional mechanical performance at elevated temperatures.

2. Chemical Resistance:

If the part will be exposed to chemicals, consider the chemical resistance of the material. Some materials, like PVC or PTFE, exhibit excellent resistance to a wide range of chemicals, while others may be susceptible to degradation or swelling. Ensure that the selected material can withstand the specific chemicals it will encounter in the application environment.

3. Thermal Properties:

Evaluate the operating temperature range of the application and choose a material with suitable thermal properties. Materials like PPS, PEEK, or LCP offer excellent heat resistance, while others may have limited temperature capabilities. Consider factors such as the maximum temperature, thermal stability, coefficient of thermal expansion, and heat transfer requirements of the part.

4. Electrical Properties:

For electrical or electronic applications, consider the electrical properties of the material. Materials like PBT or PPS offer good electrical insulation properties, while others may have conductive or dissipative characteristics. Determine the required dielectric strength, electrical conductivity, surface resistivity, and other relevant electrical properties for the application.

5. Environmental Conditions:

Assess the environmental conditions the part will be exposed to, such as humidity, UV exposure, outdoor weathering, or extreme temperatures. Some materials, like ASA or HDPE, have excellent weatherability and UV resistance, while others may degrade or become brittle under harsh conditions. Choose a material that can withstand the specific environmental factors to ensure long-term performance and durability.

6. Regulatory Compliance:

Consider any regulatory requirements or industry standards that the material must meet. Certain applications, such as those in the medical or food industries, may require materials that are FDA-approved or comply with specific certifications. Ensure that the selected material meets the necessary regulatory and safety standards for the intended application.

7. Cost Considerations:

Evaluate the cost implications associated with the material selection. Different materials have varying costs, and the material choice should align with the project budget. Consider not only the material cost per unit but also factors like tooling expenses, production efficiency, and the overall lifecycle cost of the part.

8. Material Availability and Processing:

Check the availability of the material and consider its processability in injection molding. Ensure that the material is readily available from suppliers and suitable for the specific injection molding process parameters, such as melt flow rate, moldability, and compatibility with the chosen molding equipment.

9. Material Testing and Validation:

Perform material testing and validation to ensure that the selected material meets the required specifications and performance criteria. Conduct mechanical, thermal, chemical, and electrical tests to verify the material’s properties and behavior under application-specific conditions.

Consider consulting with material suppliers, engineers, or experts in injection molding to get further guidance and recommendations based on the specific application requirements. They can provide valuable insights into material selection based on their expertise and knowledge of industry standards and best practices.

By carefully considering these factors and guidance, you can select the most appropriate material for injection molding that meets the specific application requirements, ensuring optimal performance, durability, and functionality of the molded parts.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

<img src="https://img.hzpt.com/img/Injectionmoldedparts/Injectionmoldedparts-L1.webp" alt="China Hot selling 3000kg 6t 8t Small Electric Crawler Spider Crane with Safety Torque Limiter “><img src="https://img.hzpt.com/img/Injectionmoldedparts/Injectionmoldedparts-L2.webp" alt="China Hot selling 3000kg 6t 8t Small Electric Crawler Spider Crane with Safety Torque Limiter “>
editor by Dream 2024-10-08