Tag Archives: sleeve coupling

China Hot selling Expansion Sleeve Safety Coupling Steel Ball Overload Motor Protector Torque Limiter

Product Description

Expansion sleeve Safety Coupling Steel Ball Overload Motor Protector 

Description:
The ZTSC safety clutch can provide cost-effective protection and reliable operation while ensuring the highest utilization of machinery and equipment.

When the driving machinery of the device is overloaded or the transmitted torque exceeds the set sliding torque, the steel ball leaves the groove of the support flange, the clutch disengages, causing the active end component and the driven end component to slip. At this time, the transmitted torque decreases to a very small amount, and the transmitting ring generates axial displacement. The limit switch of the sensor is triggered to connect the sensor circuit and output a signal. Then, the output signal can be used to control the operation or cut off the power source, and the device stops rotating, playing a role in protecting the device. After the overload is eliminated, the steel ball rotates 360 ° in the cage rotation, and it will automatically close. In this way, the active end and driven end components will return to normal transmission in their original positions after rotating each other for 1 cycle.

Advantages:

1. Lowest price based on large scale production.
2. High and stable quality level.
3. Widely used in various mechanical and hydraulic fields.
4. Compensation for axial, radial and angular misalignment.
5. Convenient axial plugging assembly.
6. No brittlement at low temperature.
7. Good slippery and frictional properties.
8. Resistance to chemical corrosion.
9. Rich experience working with big companies in this field.

Product parameters:

Packing & shipping:
1 Prevent from damage.
2. As customers’ requirements, in perfect condition.
3. Delivery : As per contract delivery on time
4. Shipping : As per client request. We can accept CIF, Door to Door etc. or client authorized agent we supply all the necessary assistant.

FAQ:
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 5: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 6: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Rigid
Customization:
Available

|

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China Hot selling Expansion Sleeve Safety Coupling Steel Ball Overload Motor Protector Torque Limiter  China Hot selling Expansion Sleeve Safety Coupling Steel Ball Overload Motor Protector Torque Limiter
editor by CX 2024-02-08

Chinese sales made in China – replacement parts – in Odesa Ukraine Top Quality Flexible EPT al Nylon Sleeve Gear Coupling with top quality

Chinese  sales  made in China - replacement parts -  in Odesa Ukraine  Top Quality Flexible EPT al Nylon Sleeve Gear Coupling with top quality

We – EPG Team the most significant gearbox & motors , torque limiter couplings and gears factory in China with 5 distinct branches. For more specifics: Cellular/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778083988828

chinese prime quality flexible mechanical nylon sleeve gear coupling

Nylon sleeve Curved teeth gear coupling: 

one. Double-section curved-tooth coupling 

2. Widely used in various mechanical & hydraulic fields 

three. Nylon-steel combined,routine maintenance-free 

four. Compensate for axial,radial and angular misalignments. 

five. Convenient axial plugging assembly 

6. Finished product’s bore tolerance conforms to ISO H7,keyway width tolerance  

  conforms to DIN6885/1 JS9. 

seven. For installation dimensions,please refer to the following table. 

8. Could be alternative for KTR Bowex coupling Type M.

Characters of nylon-sleeve: 

one. Excellent mechanical properties

two. No brittlement at low temperature

three. Good slippery and frictional properties

four. Excellent electrical insulation

5. Resistance to chemical corrosion

six. High accuracy of machining

Use:

Mainly utilised in the mining, metallurgical, cement, chemical compounds,design, buiding resources,

electric powered power, telecommunictions, textiles, and transportation departments.

Such as:

one. conveyor:Belt conveyor,AFC conveyor, chain conveyor, screw conveyor.

2. Pum:Drinking water pump, oil pump, slush pump, etc.

three.Fan: Draft enthusiast, fanner, boil enthusiast, and so on.

4. Excator:bucket excavator bucket, wheel excavators .

five. Crane:Tower crane, gantry crande, bridge crane.

six.Other individuals:A variety of elevators, coal plough, ball mill, crusher, recreation machine.

seven.Blender gear, centrifuger, washer, leather-ma ept machine, machine for recreation 

   park mixer wire drawing machine.Extruder, dregs crusher of boiler.

8.Plastic feeder, rubber smelling device, etc.
 

OUR Service:

one) Aggressive price and excellent high quality

2) Utilized for transmission programs.

3) Exceptional performance, extended utilizing existence

4) Could be  developed in accordance to your drawings or information sheet

5) Pakaging:comply with the customers’ requirements or as our normal deal

six) Brand name identify: per each and every customer’s requirement.

7) Adaptable minimum purchase quantity

8) Sample can be supplied

MAIN PRODUCTS:

1) Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate

2) Forging, Casting, Stampling Part

3) V Belt Pulley and Taper Lock Bush Sprocket, Idler and Plate WheelSpur Gear, Bevel Gear, Rack 

four) Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.

five) Shaft Coupling:including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling,              Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint 

six) Shaft Collars: including Setscrew Type, Single Split and Double Splits

Organization Data
ZheJiang EPT Equipment Co., Ltd. specializes in manufacturing Mechanical Power Transmission Products.
We EPT is the division/branch of SCMC Group, which is a wholly condition-owned organization, set up in 1980.
About Mighty:
-3 producing factories, we have 5 technical personnel, our FTY have sturdy capacity for style and procedure design, and a lot more than
70 staff and double change eveyday.
-Large high quality of a variety of materials buy and stock in warhouse which make sure the lower cost for the materials and production in
time.
-Strick high quality manage are implement in the complete prodution. we have incoming inspection,approach inspection and ultimate creation
inspection which can guarantee the best of the products top quality.
-fourteen several years of machining encounter. Extended time cooperate with the Worldwide Purchaser, make us simple to recognize the csutomer and take care of the export.
MIGHTY’s goods are mostly exported to Europe, The us and the Middle East market place. With the leading-ran ept management, skilled specialized assistance and abundant export expertise, EPT has established long lasting and stable company partnership with several globe renowned companies and has received good popularity from globally customers in global sales.

FAQ
Q: Are you ept comLugs (tabs) on the exterior diameter of the FRICTION DISCS fit into corresponding slots in the SLEEVE. The within diameter of the Generate DISCS are related to the Push HUB by means of equipment enamel or other generate geometries. The SLEEVE includes a precision machined pilot onto which a sprocket, pulley, sheave, coupling or adapter can be attached.pany or producer ?
A: We are manufacturing unit.
Q: How lengthy is your shipping and delivery time?
A: Usually it is 5-10 days if the items are in stock. or it is fifteen-20 days if the merchandise are not in inventory, it is in accordance to
quantity.
Q: Do you supply samples ? is it totally free or extra ?
A: Sure, we could offer you the sample for totally free cost but do not shell out the expense of freight.
Q: What is your conditions of payment ?
A: Payment=10000USD, 30% T/T in ept ,balance prior to shippment

The use of unique gear manufacturer’s (OEM) element numbers or trademarks , e.g. CASE® and John Deere® are for reference purposes only and for indicating merchandise use and compatibility. Our company and the shown alternative areas contained herein are not sponsored, authorized, or created by the OEM.

Chinese  sales  made in China - replacement parts -  in Odesa Ukraine  Top Quality Flexible EPT al Nylon Sleeve Gear Coupling with top quality

Chinese  sales  made in China - replacement parts -  in Odesa Ukraine  Top Quality Flexible EPT al Nylon Sleeve Gear Coupling with top quality

Chinese  sales  made in China - replacement parts -  in Odesa Ukraine  Top Quality Flexible EPT al Nylon Sleeve Gear Coupling with top quality