Tag Archives: wide angle pto shaft

China Custom Custom Wide Angle Joint Torque Limiter Clutch Repair Kit Tractor Pto Drive Shaft for Pto Yoke Assembly

Product Description

 

Product Category

 

Product Description

 

Craft

OEM Custom Agricultural Equipment Accessories Part Flange Yoke

Available materials

Aluminum, copper, brass, stainless steel, steel, iron, alloy, zinc etc.

Drawing Formats

PRO/Engineer, Auto CAD(DXF,DWG), CHINAMFG Works , UG, CAD / CAM / CAE, PDF,TIF etc.

Testing Equipment

CMM;Tool microscope;multi-joint arm;Automatic height gauge;Manual height gauge;Dial gauge;Marble platform;Roughness measurement.

One stop processing

CNC Turning, Milling parts, Drilling, Auto Lathe, Grinding, EDM wire cutting, Surface Treatment, etc.

Surface treatment:

Clear/color anodized; Hard anodized; Powder-coating;    
Sand-blasting; Painting;

Nickel plating; Chrome plating; Zinc plating; Silver/gold plating; 

Black oxide coating, Polishing etc…

Gerenal Tolerance:

(+/-mm)

CNC Machining: 0.005mm

Turning: 0.005mm

Grinding(Flatness/in2): 0.003mm

ID/OD Grinding: 0.002mm

Wire-Cutting: 0.002mm
100% QC quality inspection before delivery, can provide quality inspection form.

Certification:

ISO9001:2008, ROHS

 

Detailed Photos

 

 

Are you the source factory?
Yes, we are the source manufacturer here. As the source manufacturer, we personally purchase rawmaterials, and then strictly control the production link, quality inspection link and delivery link toensure that the products can be delivered to customers with good quality and quantity.

Could you please provide drawings?
If you have samples, you can provide them to us. We can test your samples through the equipmentand then draw the drawings.

Could you provide samples?
We can provide a small number of free samples, and customers bear the freight

Could you please provide the test report?
All our products are tested before delivery. lf the buyer needs the test report, we can provide it. including the raw materials used in this product, these can be detected.
  /* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

What eco-friendly or sustainable practices are associated with injection molding processes and materials?

Eco-friendly and sustainable practices are increasingly important in the field of injection molding. Many advancements have been made to minimize the environmental impact of both the processes and materials used in injection molding. Here’s a detailed explanation of the eco-friendly and sustainable practices associated with injection molding processes and materials:

1. Material Selection:

The choice of materials can significantly impact the environmental footprint of injection molding. Selecting eco-friendly materials is a crucial practice. Some sustainable material options include biodegradable or compostable polymers, such as PLA or PHA, which can reduce the environmental impact of the end product. Additionally, using recycled or bio-based materials instead of virgin plastics can help to conserve resources and reduce waste.

2. Recycling:

Implementing recycling practices is an essential aspect of sustainable injection molding. Recycling involves collecting, processing, and reusing plastic waste generated during the injection molding process. Both post-industrial and post-consumer plastic waste can be recycled and incorporated into new products, reducing the demand for virgin materials and minimizing landfill waste.

3. Energy Efficiency:

Efficient energy usage is a key factor in sustainable injection molding. Optimizing the energy consumption of machines, heating and cooling systems, and auxiliary equipment can significantly reduce the carbon footprint of the manufacturing process. Employing energy-efficient technologies, such as servo-driven machines or advanced heating and cooling systems, can help achieve energy savings and lower environmental impact.

4. Process Optimization:

Process optimization is another sustainable practice in injection molding. By fine-tuning process parameters, optimizing cycle times, and reducing material waste, manufacturers can minimize resource consumption and improve overall process efficiency. Advanced process control systems, real-time monitoring, and automation technologies can assist in achieving these optimization goals.

5. Waste Reduction:

Efforts to reduce waste are integral to sustainable injection molding practices. Minimizing material waste through improved design, better material handling techniques, and efficient mold design can positively impact the environment. Furthermore, implementing lean manufacturing principles and adopting waste management strategies, such as regrinding scrap materials or reusing purging compounds, can contribute to waste reduction and resource conservation.

6. Clean Production:

Adopting clean production practices helps mitigate the environmental impact of injection molding. This includes reducing emissions, controlling air and water pollution, and implementing effective waste management systems. Employing pollution control technologies, such as filters and treatment systems, can help ensure that the manufacturing process operates in an environmentally responsible manner.

7. Life Cycle Assessment:

Conducting a life cycle assessment (LCA) of the injection molded products can provide insights into their overall environmental impact. LCA evaluates the environmental impact of a product throughout its entire life cycle, from raw material extraction to disposal. By considering factors such as material sourcing, production, use, and end-of-life options, manufacturers can identify areas for improvement and make informed decisions to reduce the environmental footprint of their products.

8. Collaboration and Certification:

Collaboration among stakeholders, including manufacturers, suppliers, and customers, is crucial for fostering sustainable practices in injection molding. Sharing knowledge, best practices, and sustainability initiatives can drive eco-friendly innovations. Additionally, obtaining certifications such as ISO 14001 (Environmental Management System) or partnering with organizations that promote sustainable manufacturing can demonstrate a commitment to environmental responsibility and sustainability.

9. Product Design for Sustainability:

Designing products with sustainability in mind is an important aspect of eco-friendly injection molding practices. By considering factors such as material selection, recyclability, energy efficiency, and end-of-life options during the design phase, manufacturers can create products that are environmentally responsible and promote a circular economy.

Implementing these eco-friendly and sustainable practices in injection molding processes and materials can help reduce the environmental impact of manufacturing, conserve resources, minimize waste, and contribute to a more sustainable future.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

limiter_torquelimiter_torque
editor by Dream 2024-11-18

China Best Sales Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint Cross Cover Agricultural Machinery Tractor Parts Pto Drive Shaft

Product Description

 Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint cross Cover  Agricultural Machinery Tractor Parts Pto Drive Shaft 

Product Description

A PTO shaft (Power Take-Off shaft) is a mechanical component used to transfer power from a tractor or other power source to an attached implement such as a mower, tiller, or baler. The PTO shaft is typically located at the rear of the tractor and is powered by the tractor’s engine through the transmission.
The PTO shaft is designed to provide a rotating power source to the implement, allowing it to perform its intended function. The implement is connected to the PTO shaft using a universal joint, which allows for movement between the tractor and the implement while still maintaining a constant power transfer.

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

 

 

SHIELD S SHIELD W

   

Packaging & Shipping

 

Company Profile

HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

 

FAQ

1.WHAT’S THE PAYMENT TERM?

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

2.HOW TO DELIVER THE GOODS TO US?

Usually we will ship the goods to you by sea.

3.HOW LONG IS YOUR DELIVERY  TIME AND SHIPMENT?

30-45days.

4.WHAT’RE YOUR MAIN PRODUCTS?

We currently product Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like Cylinder , Valve ,Gear pump and motor.

 

PTO Drive Shaft Parts

                                           

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Pto Shaft
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Harvester, Planting and Fertilization
Material: 45cr Steel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

What eco-friendly or sustainable practices are associated with injection molding processes and materials?

Eco-friendly and sustainable practices are increasingly important in the field of injection molding. Many advancements have been made to minimize the environmental impact of both the processes and materials used in injection molding. Here’s a detailed explanation of the eco-friendly and sustainable practices associated with injection molding processes and materials:

1. Material Selection:

The choice of materials can significantly impact the environmental footprint of injection molding. Selecting eco-friendly materials is a crucial practice. Some sustainable material options include biodegradable or compostable polymers, such as PLA or PHA, which can reduce the environmental impact of the end product. Additionally, using recycled or bio-based materials instead of virgin plastics can help to conserve resources and reduce waste.

2. Recycling:

Implementing recycling practices is an essential aspect of sustainable injection molding. Recycling involves collecting, processing, and reusing plastic waste generated during the injection molding process. Both post-industrial and post-consumer plastic waste can be recycled and incorporated into new products, reducing the demand for virgin materials and minimizing landfill waste.

3. Energy Efficiency:

Efficient energy usage is a key factor in sustainable injection molding. Optimizing the energy consumption of machines, heating and cooling systems, and auxiliary equipment can significantly reduce the carbon footprint of the manufacturing process. Employing energy-efficient technologies, such as servo-driven machines or advanced heating and cooling systems, can help achieve energy savings and lower environmental impact.

4. Process Optimization:

Process optimization is another sustainable practice in injection molding. By fine-tuning process parameters, optimizing cycle times, and reducing material waste, manufacturers can minimize resource consumption and improve overall process efficiency. Advanced process control systems, real-time monitoring, and automation technologies can assist in achieving these optimization goals.

5. Waste Reduction:

Efforts to reduce waste are integral to sustainable injection molding practices. Minimizing material waste through improved design, better material handling techniques, and efficient mold design can positively impact the environment. Furthermore, implementing lean manufacturing principles and adopting waste management strategies, such as regrinding scrap materials or reusing purging compounds, can contribute to waste reduction and resource conservation.

6. Clean Production:

Adopting clean production practices helps mitigate the environmental impact of injection molding. This includes reducing emissions, controlling air and water pollution, and implementing effective waste management systems. Employing pollution control technologies, such as filters and treatment systems, can help ensure that the manufacturing process operates in an environmentally responsible manner.

7. Life Cycle Assessment:

Conducting a life cycle assessment (LCA) of the injection molded products can provide insights into their overall environmental impact. LCA evaluates the environmental impact of a product throughout its entire life cycle, from raw material extraction to disposal. By considering factors such as material sourcing, production, use, and end-of-life options, manufacturers can identify areas for improvement and make informed decisions to reduce the environmental footprint of their products.

8. Collaboration and Certification:

Collaboration among stakeholders, including manufacturers, suppliers, and customers, is crucial for fostering sustainable practices in injection molding. Sharing knowledge, best practices, and sustainability initiatives can drive eco-friendly innovations. Additionally, obtaining certifications such as ISO 14001 (Environmental Management System) or partnering with organizations that promote sustainable manufacturing can demonstrate a commitment to environmental responsibility and sustainability.

9. Product Design for Sustainability:

Designing products with sustainability in mind is an important aspect of eco-friendly injection molding practices. By considering factors such as material selection, recyclability, energy efficiency, and end-of-life options during the design phase, manufacturers can create products that are environmentally responsible and promote a circular economy.

Implementing these eco-friendly and sustainable practices in injection molding processes and materials can help reduce the environmental impact of manufacturing, conserve resources, minimize waste, and contribute to a more sustainable future.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China Best Sales Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint Cross Cover Agricultural Machinery Tractor Parts Pto Drive Shaft  China Best Sales Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint Cross Cover Agricultural Machinery Tractor Parts Pto Drive Shaft
editor by CX 2024-01-15

China Best Sales Wide Angle Joint Torque Limiters Tractor Pto Shaft

Product Description

 

Product Description

We are committed to using the most advanced technology and equipment to ensure that the PTO shafts we produce have excellent quality and reliability, to ensure that customers receive the best performance and service life. Our team is composed of experienced professionals who can tailor the PTO shaft to the customer’s needs to best meet their specific requirements.Product include wide angle-central body,wide angle-triangular tube yoke,wide angle-lemon tube yoke and wide angle-star tube yoke,We look CHINAMFG to working with you and manufacturing high-quality wide angle  for you to help your project achieve greater success. If you have any questions about our , please feel free to contact us.

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

 

 

Packaging & Shipping

 

 

Company Profile

    HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
    We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

FAQ

1.WHAT’S THE PAYMENT TERM?

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

2.HOW TO DELIVER THE GOODS TO US?

Usually we will ship the goods to you by sea.

3.How long is your delivery time and shipment?

30-45days

 

Type: Wide Angle
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Pto Shaft
Material: 45cr Steel
Power Source: Pto Shaft
Weight: 7-13kg
After-sales Service: Online Support
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?

Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:

1. Material Selection:

The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.

2. Temperature Resistance:

In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.

3. Chemical Resistance:

In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.

4. UV Stability:

For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.

5. Mechanical Strength and Impact Resistance:

In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.

6. Compliance with Industry Standards:

When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.

7. Environmental Considerations:

In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.

8. Customization and Design Flexibility:

Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.

Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Best Sales Wide Angle Joint Torque Limiters Tractor Pto Shaft  China Best Sales Wide Angle Joint Torque Limiters Tractor Pto Shaft
editor by CX 2023-12-08

China WA Series Wide Angle Joint for PTO Shaft (CV Joint) with Good quality

Condition: New
Warranty: 1 many years
Relevant Industries: Constructing Material Outlets, Manufacturing Plant, Machinery Fix Outlets, Meals & Beverage Manufacturing unit, Farms, Property Use, Construction works , Energy & Mining
Fat (KG): ten
Showroom Location: None
Movie outgoing-inspection: Presented
Machinery Check Report: Presented
Marketing Sort: New Item 2571
Warranty of core parts: 1 Calendar year
Core Parts: PTO shaft
Framework: Agricultural equipment elements
Material: Steel
Coatings: –
Torque Potential: -10000nm
Design Number: many
Merchandise identify: PTO shaft
Application: Agricultural machinery
Regular: Consumer Normal
Certification: ISO9001
Samples: Provide Sample
Soon after Guarantee Support: On the web support
Local Service Location: None
Packaging Details: Wooden Case
Port: ZheJiang / HangZhou

WA Sequence Extensive Angle Joint for PTO Shaft (CV Joint) The Broad Angle Joint is a element of the Ever-power high-performance Vast Angle PTO drive shafts, which are the foremost travel shaft answer in the agriculture and garden & turf industries. At any time-electrical power Broad Angle PTO driveshafts are full assemblies from tractor to implement. They are made for continuous hefty-duty all-objective use and meet up with the specifications of big farms and contractors. Vast Angle yokes are manufactured from metal to withstand robust situations and are engineered for a precise match. At any time-power vast-angle yokes enable a rotating shaft to transmit power via a variable angle, at consistent rotational velocity, with no an considerable improve in vibration or friction. The metric item line supplying of PTO push shafts, Ever-electricity Profile, meets and/or exceeds the top quality of items at the moment presented by our competitors inside of a multitude of industries.

SeriesCrossA(mm)B(mm)C(mm)D(mm)EF
2WA.0123.8*61.3/22*761531041191052WA.0505B/D/G2WA.06/06L
4WA.0127*seventy four.6/23.8*911531041241104WA.0505B/D/G4WA.06/06L
6WA.0130.2*92//27*one hundred1761051361276WA.0505B/D/G6WA.06/06L/06ST
8WA.0135*106.5/30.2*1061841201461478WA.0505B/C/D/G8WA.06/06L/06ST
32WA.0132*seventy six/27*9417612612611732WA.0505B/D/G32WA.06/06L/06ST
36WA.0136*89/32*10618412512512636WA.0505B/C/D/E26WA.06/06L/06ST
42WA.0142*104.5/36*12418412414915042WA.0505B/C/D/E42WA.06/06ST/06G
Performance Advantages of Ever-electricity Vast Angle Joint The WA sequence joint offers verified At any time-power technological innovation and is optimally designed for all places of application. Superb electrical power transmission, prolonged services life, lower upkeep, convenient operation. For many years, Ever-electricity has been a guarantor of top top quality. The WA sequence is optimally dimensioned for simple to hefty drive tasks. It is characterized by its sturdy design and large reliability in day-to-day use. An additional gain: All parts of the WA series travel shafts can be easily replaced to improve running convenience or in the case of spare areas.▎Fits Simple Lock Guard System: Provides complete coverage at greatest angles, Complete 360° friction weld on guard bell, Black coloring that is resilient in opposition to ultraviolet light-weight and ozone, Chilly weather conditions influence rated to -35°C, Satisfies and exceeds all applicable basic safety expectations, Fast and effortless approach for removal and installation.▎ Yokes: Interchangeable with all other Weasler yokes and normal yokes obtainable in the industry, Solid iron collars, By way of-Bore keeps debris from collecting within.▎ Cross & Substantial Brightness Grocery store Advertising and marketing Stadium P4 P5 P6 P8 P10 Mm Entire Coloration Display screen Waterproof Indoor Out of doors Led Exhibit Bearing Kits: Large torque capacity and for a longer time existence, Manufactured with substantial-top quality steel for increased power,Regular kits can be upgraded to or interchanged with E-Kits.▎ Exact same part patterns are employed for Weasler’s domestic and metric product strains. We also supply PTO Shaft & Agricultural gearboxesIf you are interested, you can click on right here: agricultural-pto-shaft/ Agricultural gearboxes: agricultural-pto-gearbox/ Broad Angle Joint ManufactureAt any time-power handles an area of much more than 12000 sq. CZPT and employs more than 100 men and women. We focus in developing,production, and marketing PTO shafts, industrial universal shafts, car drive shafts, universal joint coupling shafts,common joints, and so on. The once-a-year turnover is sixty million yuan and 9 million US dollars, escalating yr by calendar year. Our merchandise appreciate a large reputation between clients in Europe, the United States, Asia, Australia, and North The us. We are the top 3 professional OEM suppliers of many agricultural resource factories in the domestic industry. CZPT transmission shaft adheres to our “QDP” basic principle: high quality very first, fast shipping, and aggressive value. We have received CE, TS / 16949, and ISO9001 certification, and have systematic production equipment and a QC team to make certain our good quality and shipping. We warmly welcome buddies from all walks of existence to go to and create mutually useful prolonged-phrase cooperative relations. Click below for much more details! Customer Comments Graph Associated Merchandise Agricultural Gearbox For Offset MowersAgricultural Gearbox For Flail MowersDriveline Gearbox Of Irrigation SystemCenter-dive Gear Box of Irrigation SystemGearboxes For Feed MixerOil-pump GearboxPotato Harvester GearboxHarvester Gearbox Reversing Bevel Gearbox
Agricultural Gearbox For Vineyard And Orchard Grass CuttersAgricultural Gearbox For HAY TEDDERGeneral Gearbox For Agricultural MachinerySide-Shipping and delivery Rake GearboxPTO Velocity REDUCER GEARBOXGrain Harvester Reversing GearboxPesticide Sprayer GearboxRotary Mower GearboxesReversing Gearbox (utilized In Grain Unloading System)
Agriculture Gearbox For Rotary HarrowsAgricultural Pto Gearboxes For Driven GeneratorHydraulic PTO Drive Gearbox Speed IncreaserSLASHER GEARBOXESGrain Auger GearboxesAgricultural Chain Sprockets GearboxAgricultural Gearbox Grain Conveyor Gearbox
Company Data CZPT Team CO., LTD. IS Expert IN Creating ALL Sorts OF MECHANICAL TRANSMISSION AND HYDRAULIC TRANSMISSION LIKE: PLANETARY GEARBOXES, Large perfermonace si3n4 full ceramic ball bearing 626ZZ for brick equipment WORM REDUCERS, IN-LINE HELICAL Equipment Speed REDUCERS, PARALLEL SHAFT HELICAL Gear REDUCERS, HELICAL BEVEL REDUCERS, HELICAL WORM Equipment REDUCERS, AGRICULTURAL GEARBOXES, TRACTOR GEARBOXES, Auto GEARBOXES, PTO Travel SHAFTS, Special REDUCER & Connected Equipment Components AND OTHER Associated Merchandise, SPROCKETS, HYDRAULIC System, VACCUM PUMPS, FLUID COUPLING, Gear RACKS, CHAINS, TIMING PULLEYS, UDL Pace VARIATORS, V PULLEYS, HYDRAULIC CYLINDER, Equipment PUMPS, SCREW AIR COMPRESSORS, SHAFT COLLARS Lower BACKLASH WORM REDUCERS AND SO ON. Additionally, WE CAN Generate Custom-made VARIATORS, GEARED MOTORS, Electrical MOTORS AND OTHER HYDRAULIC Goods In accordance TO CUSTOMERS’ rail aluminum slide linear guide rail linear rail ULC18 linear slide block DRAWINGS. Certifications Item packaging

limiter torque

What Is a Torque Limiter?

Whether you’re looking to add an extra bit of torque to your tool, or simply to keep the torque from getting out of hand, a limiter is a good tool to have on hand. There are a number of different limiters to choose from, including Ball detent limiters, Synchronous magnetic limiters, and Friction torque limiters.

Ball detent limiter

Typically, ball detent torque limiters use balls or rollers in sockets to control torque and force transmission through the load path. They are suitable for applications that require high precision and a fast response. They also minimize the possibility of damage caused by high-inertia loads. These torque limiters are often used on servo-driven axes. They are also suitable for packaging and woodworking.
A torque-limiting assembly consists of a gear, a cage, a series of balls, a spring, and breakout means. A cage is mounted between the input gear and a fixed backing plate. The cage rotates through half of the input gear’s axial angle. The cage holds the primary balls. When torque overload occurs, the primary balls roll out of their pockets and force the drive and driven elements to separate.
The cage also increases the frictional resistance to relative rotation. During normal torque loading, the primary balls continue to roll on the flat driving surface of the input gear. The cage displaces the input gear against the bias of the spring. This action maintains the assembly in this arrangement. The cage then rotates through the other half of the input gear’s axial angle. When the primary balls roll out of their pockets, the cage is forced axially toward the fixed backing plate.
The cage also has a secondary ball stop, which limits the travel of the secondary balls. Secondary balls are seated in terminal positions on the input gear. These balls roll out of secondary ball pockets 68 and 70. They may also be positioned in terminal positions. The secondary balls travel over ramps 69 and 72. They are sized to maintain a axial separation distance between the driving surface and the detent surface.
The primary balls are seated in the primary ball pockets 40 and 50 in the driving surface of the input gear. The cap projects into the primary ball pockets 50 in the detent surface 48. A plurality of secondary balls are seated in secondary ball pockets 68 and 70 in the driven surface of the cage. This action prevents the input gear from being displaced by the spring 20.

Friction torque limiter

Essentially a shaft-to-shaft coupling, a friction torque limiter combines economy and simplicity. The unit is designed to protect against excessive torque and also prevent damage from overloads. Typically used in conjunction with other drive components, a torque limiter is easy to install and replace, providing simple, cost-effective protection.
Torque limiters are available in many formats, including basic shear pins, ball detent units, and pneumatic controls. Each type of torque limiter must be designed for a specific application. Some systems offer a single position device, while others allow the operator to adjust settings to prevent overloads.
Torque limiters are commonly used in a wide variety of applications, including conveyors, sewage treatment plants, and power stations. These devices provide simple, cost-effective overload protection, and can be used in both directions of torque transmission.
Friction torque limiters are ideal for applications that operate under dusty conditions. They are also more predictable than shear pins, and can be adjusted to a variety of torque levels. The H-diameter calibration system on a GEC model, for example, makes it easier to determine the best torque setting for a given application.
Torque limiters can be coupled to any combination of rotating bodies, including shafts, pulleys, gears, and motors. They can be adjusted with an adjustable nut, and a variety of spring sets can be fitted to provide different torque ranges.
Torque limiters may also be equipped with a limit switch, which permits control of the motor drive system. If a torque overload occurs, the limit switch will signal the control system to shut the motor off.
Torque limiters are usually made from durable heat-treated steel. Some models come with bronze bushings for additional protection, and some offer a random reset device. To determine which torque limiter is right for your application, consult a factory. Regardless of the type of torque limiter you choose, it should have the right torque range and the right bore size.
In addition to preventing overloads, friction torque limiters can also help prevent damage to drive components, especially when they are used in conjunction with gears, sprockets, and pulleys. They are also simple to install and replace, providing simple, cost-effective, and user-friendly protection.limiter torque

Reset style of limiter

Depending on the application, there are several styles of torque limiters. It is a good idea to consult a manufacturer in your area for the specifics. You’ll also want to make sure your new tool is the most effective fit for your application. A good rule of thumb is to match the output of your machine to the inputs of your torque limiter.
A good torque limiter should offer the following: a minimum of lost motion, a low frictional drag, and a low operating temperature. Some manufacturers offer a host of options, including a variety of materials and sizes. It is also worthwhile to select a torque limiter based on its mounting surface. Ideally, you want it to sit as close to the output of the machine as possible.
The best torque limiters are not only clever, they also offer a high degree of safety and reliability. They come in several varieties, from a simple pawl and spring configuration to hydraulic pressure and pneumatic pressure to complex synchronous magnetic and synchronous magnetic coupled units. Choosing the right one for your application can make a world of difference, especially if you want to make sure your equipment runs smoothly and efficiently.
One notable exception is a hydraulic torque limiter, which is seldom used for a simple reason: they’re too expensive. They are a bit complicated, and tend to occupy much more space than their petrochemical cousins. They also tend to require a lot of maintenance, especially if you’re dealing with a corrosive environment. The biggest disadvantage is that they often do not work well in high-stress environments. Fortunately, there are more cost-effective solutions to this problem. You should also know that a torque limiter is a safety device, so you should make sure to use one. This type of equipment is also useful in correcting misalignment and parallelism errors, so you’ll want to be sure you’re putting it to good use.
A torque limiter is a safety device that must decouple from the driven device when overload is detected. They are a worthwhile investment, and can be a useful tool in correcting misalignment and parallelism mistakes, ensuring your machine runs smoothly and safely.limiter torque

Synchronous magnetic torque limiter

Basically, a torque limiter is a device that is used to limit the torque of the system. It protects the mechanical system of the machine from overload and damage. These devices are usually integrated into the drive train of a table-based machine or hand tool. In some cases, they may be reset automatically, while others need to be reset manually.
There are two kinds of torque limiters: the mechanical and the disconnect. In the mechanical type, a spring or a pawl is used to limit the torque. In the disconnect type, a mechanical component is sacrificed to allow the torque limiter to disconnect the drive. The disconnect type may be reset manually, while some may need to be reset automatically.
The synchronous magnetic torque limiter is a type of limiter that uses two magnets on each shaft of the machine. This type of limiter has some advantages over mechanical types, but there are also disadvantages. For example, it may have more backlash than the mechanical types. It may also transmit torque through a physical barrier. These disadvantages are sometimes offset by the fact that the synchronous magnetic torque limiter is able to work quickly and smoothly.
The torque limiter is usually the last gearset installed in a transmission assembly. It protects mechanical systems from overload and prevents the engine from burning out. Some types of torque limiters may require adjustment, but most of them do not. A torque limiter can be found in many cordless drills. Often, the torque limiter is positioned inside the planetary gearset.
The variable magnetic gearbox is another type of torque limiter. This type is a rotational device that uses a variable ratio magnetic gear. The variable magnetic gearbox uses about 25% of the input power and has lower maintenance requirements. It also has a lower output torque. It can be used to effectively limit the torque of a system.
A magnetic particle clutch can also be used as a torque limiter. This type of limiter is similar to the friction plate clutch. It can be integrated into a cylinder head. This type of clutch can be dynamically set or statically set.
China WA Series Wide Angle Joint for PTO Shaft (CV Joint)     with Good quality China WA Series Wide Angle Joint for PTO Shaft (CV Joint)     with Good quality
editor by czh 2023-06-27

China Torque Limiter Wide Angle Joints of the PTO Tractor Shaft torque limiter exporters

Problem: New
Warranty: 6 Months
Applicable Industries: Constructing Material Stores, Manufacturing Plant, Equipment Mend Stores, Farms, Retail, Construction works , Energy & Mining
Showroom Spot: None
Video clip outgoing-inspection: Supplied
Machinery Take a look at Report: Presented
Advertising Type: Regular Solution
Sort: Shafts
Use: Cultivators
Broad Angle Joints: Cultivator, Spare Areas of PTO Shaft
Torque Limiter Wide Angle Joint: Cardan Shaft Broad Angle Limiter
Soon after Guarantee Provider: On the web assist
Neighborhood Service Location: None
Packaging Details: Cartons or pallets
Port: ZheJiang or HangZhou Port

Torque Limiter PTO Extensive Angle Joint
Kind: Sequence W2500 (036)
Universal Joint: 32*106.3, 36*89
A: 1 3/8″ -Z6 or 1 3/8″ -Z21
L1 : 118
L: 348
D: 182
Kind: VW036138 or VW036121
Code: 800W036138 or VW 800W036121

Packaging & Shipping
Packaging Particulars: Cartons or pallets
Shipping Element: forty five-50days
Technical specs

Device PTO shaft
one) MOQ:10 sets
2) CE Certification
3) Advanced products

Our Companies
one) Aggressive price and good quality
two) Utilised for transmission programs.
three) Superb overall performance, pto shaft friction clutch (Taper Pin) long using existence
four) Can produce according to your drawings or samples
five) Adhering to the customers’ demands or as our normal packing
six) Model name: ZJWC or we can make in accordance to every single customer’s requirement.
seven) Versatile least buy quantity
eight) Sample can be equipped

For a lot more info about us, contact us correct away.
We will do our ideal to satisfy your requrement of the product and provide the most perfected soon after-revenue services for you.

Truly feel free of charge to consider a nearer look around our webpages, and if you have fascinated in, you should enquiry to us your favourite things.welcome you link with us or come to our factory to make order with sample for the great develepment of our distribution.

Organization Details
We are factories specialised in production Tractor PTO Shaft, PTO Spare Components with virtually twenty several years. Our manual manufacturing amount is far more than 6000,000,000 sets. ISO9001 & CE are our good quality certifications.

Sector and Trade Integration
With CE certification
Distinct Kinds of U-Joint utilised in the PTO Shaft
Forged yoke
Use for fifteen-120HP
Multitooth spline. Requirements from the 1 3 / 8 “Z6, 1 1 / 8” Z6, 1 3 / 4 “Z6, 39211-3U000 39100-1HH0C 39211-1FA0B CV Joint For Dice (Z11) 1 3 / 8″ Z20, 1 1 / 8 “Z20, 1 3 / 4” Z20, 1 3 / 8 “Z21 , 1 1 / 8 “Z21, 1 3 / 4” Z21, etc., complete specifications are welcome.

FAQ
For much more information about us, make contact with us proper absent.
We will do our ideal to satisfy your requrement of the merchandise and provide the most perfected soon after-sales solutions for you.

Come to feel free to just take a nearer search all around our webpages, and if you have intrigued in, 6204 2RS RS ZZ Drinking water Resistance Bearing Items ZheJiang you should enquiry to us your preferred things.welcome you hook up with us or occur to our factory to make get with sample for the good develepment of our distribution.

limiter torque

Types of Torque Limiters

Regardless of the type of application, there are several types of torque limiters available. Some of these types include Ball detent limiters, Hydraulic torque limiters, and Magnetic torque limiters.

Ball detent limiter

Typically, the ball detent torque limiter is used in applications where precision is essential. For example, in packaging or textile applications, the detent can limit the amount of torque transmitted from the input gear to the output gear. In some applications, the torque limiter is a preferable option over a slip clutch.
The basic ball detent mechanism involves a series of metal balls encased in two circular plates. The balls are held in place by springs. In normal operation, the balls rest in sockets within a pressure flange. However, in an overload situation, the balls are forced out of the sockets and into the detents. The balls are then forced back into the sockets by the springs. This action continues until the overload is removed.
The ball detent torque limiter has a unique design that provides reliable overload protection. The balls are held in place by springs and the assembly rotates with the driven machine until an overload occurs.
The balls are sized to maintain a predetermined axial separation distance between the driving surface of the input gear and the detent surface of the backing plate. This axial separation distance is greater than the diameter of the primary balls. When an overload is sensed, the springs disengage the balls and the ball detent torque limiter releases the load.
In addition to the ball detent torque limiter, there are several other types of torque limiters. Some of them are simple shear pins or cam followers, while others are pneumatically engaged. These types of torque limiters can be used in conjunction with limit switches.
The ball detent torque limiter may be manually engaged when the over-torque condition is corrected. The limit switch can be manually activated or can be automatically triggered by a proximity sensor.
Torque limiters can be used to prevent physical injury to personnel and damage to sensitive equipment. They are available in various designs, including single-position and multi-position units. Many servo-driven axes are equipped with these devices. They are commonly used in mechanical wastewater treatment plants and in chain couplings.
Unlike other torque limiters, the ball detent torque limiter can accurately disengage at the preset torque value. It also has a more predictable response time than other types of torque limiters.

Magnetic torque limiter

Using a torque limiter in conjunction with a motor can be a tricky business. It requires an understanding of the mechanical gearbox and torque limiter and how they work together to reduce mechanical vibrations and achieve the correct torque levels.
A torque limiter is a simple device that transmits torque through magnetic interaction. It is a useful device for measuring and controlling the tightening of implantable medical devices such as screws and plates. Magnetic torque limiters offer several advantages over conventional devices, including increased durability and reliability. They can be sterilized and are easy to clean. In addition, they require little maintenance and are not prone to wear and tear.
Magnetic torque limiters have two main components: a handle with a cylindrical body and a mono-block shaft. The handle has an arm that enables it to be adjusted and the shaft has an arm bearing to make it movable. The handle may be used on shafts with different drive geometries.
The handle has a rotating collar that is indexed with ball detents to allow it to be adjusted. The collar is user-accessible and has the capacity to do more than just compress or extend the torque limit. It can also be used to change the gap between the two magnets in the handle.
The main component of the magnetic torque limiter is the handle, which includes a pair of magnets with opposing poles. This configuration has the magnetic effect of generating a torque from the magnetic hysteresis resistance of the magnets. The magnets are linked together by metal pins, which can be replaced.
The first pocket (4) is located on the first side of the cylindrical handle-body. The second pocket (5) is located on the second side. Both pockets contain at least one magnet, preferably a neodymium magnet. The pocket on the first side intersects the second pocket on the second side in the central through bore. The main objective of this pocket is to transmit the smallest possible torque from the input to the output.
The best way to find out how the magnetic torque limiter of the present invention performs is to put it to the test. Several tests have been conducted to determine its performance. The results show that it translates 24 Nm at a nominal speed of 2500 rpm from the input to the output.limiter torque

Hydraulic torque limiter

Using a Hydraulic Torque Limiter to protect equipment from excessive torque is beneficial in many applications. These devices are a safe way to maintain maximum torque in a power transmission system. They are available in many different types, and can be used in practically any application.
They are able to protect from excessive torque by controlling the flow of gas and hydraulic fluid in the drive system. They are used in various applications, such as conveyors, assembly lines, and industrial robots. They are used to protect equipment from overloads, and assure minimal downtime.
They are also used in applications where the driven device cannot absorb all of the output torque. The torque limiter transfers the torque from the driving shaft to the driven member. The torque limiter is also used to couple gears, sprockets, and other rotating bodies. The torque limiter transmits torque at a specified level, and stops transmitting when the torque exceeds a preset value.
Torque limiters are generally light-weight, and can be easily mounted. However, they can present a safety hazard to operating personnel. They are used in many different industries, including textile, woodworking, printing, and converting machinery.
The torque limiter is used to disconnect the inertia of the system from the jammed section, which prevents damage. In this instance, the limiter is placed as close as possible to the jam source.
Torque limiters operate by comparing the internal pressures in a hydraulic cylinder. When the pressures exceed a specified value, the torque limiter stops transmitting and begins disengaging the driven device.
These devices also allow for the use of smaller prime movers and less fuel. They can also be used to prevent stalling of the prime mover under heavy loads.
Torque limiters are available in a variety of sizes and are typically used in applications where the driven device cannot absorb all of the output torque. They are used in many industrial robots, conveyors, assembly lines, and printing and converting machinery.
Torque limiters are available in mechanical, hydraulic, and synchronous magnetic types. Some of them can tolerate continuous slip, but some are designed to slip at a specified torque value.limiter torque

CZPT Electric torque limiter

Whether you need an industrial clutch, electromagnetic brake, or torque limiter, CZPT Electric has a solution for you. This company offers the broadest range of industrial products and brakes, as well as customized solutions for your application. The company’s products are used across a wide range of industries, including material handling, crane and motion control, elevator and escalator, forklift, turf and garden, marine propulsion, and sewage pumps.
It has a large sales and distribution operation in North America, and is available in over 70 countries. The company’s products are designed to meet industrial demands for quality, performance, and reliability. Its line of Adjustable Torque Controls are designed to provide soft starting functions, as well as repeatable stops.
Torque limiters are used in many different industries, including steel mills, conveyor drives, process pumps, marine propulsion, and paper mills. They are designed to separate the load from the drive when an overload occurs. They offer both mechanical and electronic solutions, and are available in an open or closed design. They can operate at a range of 160 to 11,000 rpm. They also feature a shear neck, fail-safe, wedge-shaped construction, and clamping screws. They are available with RoHS compliant options, as well as CE certified.
These limiters also feature a proximity sensor target that can be used to switch off the drive after an overload. CZPT Electric has several models with full range torque control, which provides repeatable starts and stops. They can also be used with electrically released brakes. The company also offers a variety of clutch/brake combinations, including a wide selection of models with a ball detent or synchronous magnetic disconnect.
CZPT Electric’s products are manufactured to a high standard and are designed to meet the demands of today’s industrial applications. The company has a wide range of product catalogues available for browsing. You can find a list of available products and more information on the company’s website, which can be accessed by clicking on the “Product Catalogues” button at the bottom of the page.
China Torque Limiter Wide Angle Joints of the PTO Tractor Shaft     torque limiter exportersChina Torque Limiter Wide Angle Joints of the PTO Tractor Shaft     torque limiter exporters
editor by czh 2023-06-27

China Driveline Shaft Wide Angle Joint Agriculture Pto ShaftPlastic Guard Agricultural Yoke Wide Angle Joints torque limiter assembly

Problem: New
Guarantee: 1 12 months
Applicable Industries: Production Plant, Equipment Repair Outlets, Food & Beverage Manufacturing unit, Farms, Retail
Showroom Location: None
Video outgoing-inspection: Presented
Machinery Check Report: Provided
Marketing and advertising Type: New Merchandise 2571
Variety: Shafts
Use: Cultivators
Nearby Services Location: None
Wide Angle Joints: Cultivator, Spare Areas of PTO Shaft
Agricultural Yoke: Torque Limiter
Substantial Top quality Agriculture Pto Shaft: extensive angle pto shaft
Driveline Shaft Vast Angle Joint: tractor pto shaft
Right after Warranty Support: Video clip technological assist, Online help, Spare areas
Regional Service Location: None
Packaging Particulars: Cartons or pallets
Port: ZheJiang or HangZhou Port

Driveline Shaft Wide Angle Joint Higher Good quality Agriculture Pto Shaft Plastic Guard Agriculture Yoke PTO Extensive Angle Joint
Variety: T40
Universal Joint: 23.8*91, 27*seventy four.6
A: 1 3/8″ -Z6 or 1 3/8″ -Z21
L1 : 95
L: 287
D: 155
Type: V421138 or V421121
Code: 8571138 or VW 8571121

Packaging & Shipping
Packaging Details: Cartons or pallets
Shipping Element: 45-50days
Specifications

Equipment PTO shaft
1) MOQ:ten sets
2) CE Certification
three) Advanced products

Our Companies
1) Aggressive cost and good good quality
two) Utilized for transmission systems.
3) Exceptional performance, lengthy employing lifestyle
four) Can build according to your drawings or samples
5) Following the customers’ needs or as our common packing
six) Model name: ZJWC or we can make in accordance to every single customer’ Quality Agricultural Japanese Farm Machinery Japan Tractors Spare Areas s necessity.
seven) Versatile least purchase amount
eight) Sample can be provided

For a lot more data about us, get in touch with us correct absent.
We will do our greatest to satisfy your requrement of the product and provide the most perfected after-sales providers for you.

Really feel free of charge to just take a nearer appear all around our pages, and if you have fascinated in, please enquiry to us your preferred products.welcome you link with us or occur to our manufacturing unit to make buy with sample for the excellent develepment of our distribution.

Organization Info
We are factories specialized in manufacturing Tractor PTO Shaft, PTO Spare Parts with practically 20 several years. Our guide manufacturing amount is more than 6000,000,000 sets. ISO9001 & CE are our top quality certifications.

Business and Trade Integration
With CE certification
Diverse Types of U-Joint utilised in the PTO Shaft
Forged yoke
Use for 15-120HP
Multitooth spline. Requirements from the 1 3 / 8 “Z6, 1 1 / 8” Z6, 1 3 / 4 “Z6, 1 3 / 8” CNC 40mm Aluminum Linear Movement Bearing Shaft Support Blocks SH40 Z20, 1 1 / 8 “Z20, 1 3 / 4” Z20, 1 3 / 8 “Z21 , 1 1 / 8 “Z21, 1 3 / 4” Z21, and many others., total specifications are welcome.

FAQ
For much more details about us, contact us proper absent.
We will do our best to meet your requrement of the solution and offer the most perfected after-revenue companies for you.

Come to feel free to take a closer seem all around our internet pages, Large Good quality YF40F00007F2 E235 Slewing Ring E235B E265B Excavator Swing Bearing Circle and if you have fascinated in, remember to enquiry to us your favourite objects.welcome you link with us or come to our manufacturing facility to make purchase with sample for the very good develepment of our distribution.

limiter torque

Types of Torque Limiters

Regardless of the type of application, there are several types of torque limiters available. Some of these types include Ball detent limiters, Hydraulic torque limiters, and Magnetic torque limiters.

Ball detent limiter

Typically, the ball detent torque limiter is used in applications where precision is essential. For example, in packaging or textile applications, the detent can limit the amount of torque transmitted from the input gear to the output gear. In some applications, the torque limiter is a preferable option over a slip clutch.
The basic ball detent mechanism involves a series of metal balls encased in two circular plates. The balls are held in place by springs. In normal operation, the balls rest in sockets within a pressure flange. However, in an overload situation, the balls are forced out of the sockets and into the detents. The balls are then forced back into the sockets by the springs. This action continues until the overload is removed.
The ball detent torque limiter has a unique design that provides reliable overload protection. The balls are held in place by springs and the assembly rotates with the driven machine until an overload occurs.
The balls are sized to maintain a predetermined axial separation distance between the driving surface of the input gear and the detent surface of the backing plate. This axial separation distance is greater than the diameter of the primary balls. When an overload is sensed, the springs disengage the balls and the ball detent torque limiter releases the load.
In addition to the ball detent torque limiter, there are several other types of torque limiters. Some of them are simple shear pins or cam followers, while others are pneumatically engaged. These types of torque limiters can be used in conjunction with limit switches.
The ball detent torque limiter may be manually engaged when the over-torque condition is corrected. The limit switch can be manually activated or can be automatically triggered by a proximity sensor.
Torque limiters can be used to prevent physical injury to personnel and damage to sensitive equipment. They are available in various designs, including single-position and multi-position units. Many servo-driven axes are equipped with these devices. They are commonly used in mechanical wastewater treatment plants and in chain couplings.
Unlike other torque limiters, the ball detent torque limiter can accurately disengage at the preset torque value. It also has a more predictable response time than other types of torque limiters.

Magnetic torque limiter

Using a torque limiter in conjunction with a motor can be a tricky business. It requires an understanding of the mechanical gearbox and torque limiter and how they work together to reduce mechanical vibrations and achieve the correct torque levels.
A torque limiter is a simple device that transmits torque through magnetic interaction. It is a useful device for measuring and controlling the tightening of implantable medical devices such as screws and plates. Magnetic torque limiters offer several advantages over conventional devices, including increased durability and reliability. They can be sterilized and are easy to clean. In addition, they require little maintenance and are not prone to wear and tear.
Magnetic torque limiters have two main components: a handle with a cylindrical body and a mono-block shaft. The handle has an arm that enables it to be adjusted and the shaft has an arm bearing to make it movable. The handle may be used on shafts with different drive geometries.
The handle has a rotating collar that is indexed with ball detents to allow it to be adjusted. The collar is user-accessible and has the capacity to do more than just compress or extend the torque limit. It can also be used to change the gap between the two magnets in the handle.
The main component of the magnetic torque limiter is the handle, which includes a pair of magnets with opposing poles. This configuration has the magnetic effect of generating a torque from the magnetic hysteresis resistance of the magnets. The magnets are linked together by metal pins, which can be replaced.
The first pocket (4) is located on the first side of the cylindrical handle-body. The second pocket (5) is located on the second side. Both pockets contain at least one magnet, preferably a neodymium magnet. The pocket on the first side intersects the second pocket on the second side in the central through bore. The main objective of this pocket is to transmit the smallest possible torque from the input to the output.
The best way to find out how the magnetic torque limiter of the present invention performs is to put it to the test. Several tests have been conducted to determine its performance. The results show that it translates 24 Nm at a nominal speed of 2500 rpm from the input to the output.limiter torque

Hydraulic torque limiter

Using a Hydraulic Torque Limiter to protect equipment from excessive torque is beneficial in many applications. These devices are a safe way to maintain maximum torque in a power transmission system. They are available in many different types, and can be used in practically any application.
They are able to protect from excessive torque by controlling the flow of gas and hydraulic fluid in the drive system. They are used in various applications, such as conveyors, assembly lines, and industrial robots. They are used to protect equipment from overloads, and assure minimal downtime.
They are also used in applications where the driven device cannot absorb all of the output torque. The torque limiter transfers the torque from the driving shaft to the driven member. The torque limiter is also used to couple gears, sprockets, and other rotating bodies. The torque limiter transmits torque at a specified level, and stops transmitting when the torque exceeds a preset value.
Torque limiters are generally light-weight, and can be easily mounted. However, they can present a safety hazard to operating personnel. They are used in many different industries, including textile, woodworking, printing, and converting machinery.
The torque limiter is used to disconnect the inertia of the system from the jammed section, which prevents damage. In this instance, the limiter is placed as close as possible to the jam source.
Torque limiters operate by comparing the internal pressures in a hydraulic cylinder. When the pressures exceed a specified value, the torque limiter stops transmitting and begins disengaging the driven device.
These devices also allow for the use of smaller prime movers and less fuel. They can also be used to prevent stalling of the prime mover under heavy loads.
Torque limiters are available in a variety of sizes and are typically used in applications where the driven device cannot absorb all of the output torque. They are used in many industrial robots, conveyors, assembly lines, and printing and converting machinery.
Torque limiters are available in mechanical, hydraulic, and synchronous magnetic types. Some of them can tolerate continuous slip, but some are designed to slip at a specified torque value.limiter torque

CZPT Electric torque limiter

Whether you need an industrial clutch, electromagnetic brake, or torque limiter, CZPT Electric has a solution for you. This company offers the broadest range of industrial products and brakes, as well as customized solutions for your application. The company’s products are used across a wide range of industries, including material handling, crane and motion control, elevator and escalator, forklift, turf and garden, marine propulsion, and sewage pumps.
It has a large sales and distribution operation in North America, and is available in over 70 countries. The company’s products are designed to meet industrial demands for quality, performance, and reliability. Its line of Adjustable Torque Controls are designed to provide soft starting functions, as well as repeatable stops.
Torque limiters are used in many different industries, including steel mills, conveyor drives, process pumps, marine propulsion, and paper mills. They are designed to separate the load from the drive when an overload occurs. They offer both mechanical and electronic solutions, and are available in an open or closed design. They can operate at a range of 160 to 11,000 rpm. They also feature a shear neck, fail-safe, wedge-shaped construction, and clamping screws. They are available with RoHS compliant options, as well as CE certified.
These limiters also feature a proximity sensor target that can be used to switch off the drive after an overload. CZPT Electric has several models with full range torque control, which provides repeatable starts and stops. They can also be used with electrically released brakes. The company also offers a variety of clutch/brake combinations, including a wide selection of models with a ball detent or synchronous magnetic disconnect.
CZPT Electric’s products are manufactured to a high standard and are designed to meet the demands of today’s industrial applications. The company has a wide range of product catalogues available for browsing. You can find a list of available products and more information on the company’s website, which can be accessed by clicking on the “Product Catalogues” button at the bottom of the page.
China Driveline Shaft Wide Angle Joint Agriculture Pto ShaftPlastic Guard Agricultural Yoke Wide Angle Joints     torque limiter assemblyChina Driveline Shaft Wide Angle Joint Agriculture Pto ShaftPlastic Guard Agricultural Yoke Wide Angle Joints     torque limiter assembly
editor by czh 2023-06-27

China Torque Limiters Agricultural Machinery Wide Angle Joint Pto Shaft Wide Angle Joint Pto Shaft for Tractor ball detent torque limiter

Product Description

Product Description

 

Materlal and Surface Treatment
Cross shaft Heat treatment of 20Cr2Ni4A forging
Bearing cup 20CrMOTi forging heat treatment
Flange fork  ZG35CrMo steel casting
Spline shaft 42GrMo forging heat treatment
Spline bushing 35CrM0 forging heat treatment
Sleeve body 42CrMo forging
Surface treatment spraying
Flat key, positioning ring 42GrMo forging

 

 

 

In 2571, HangZhou CZPT Machinery Co.,ltd was established by Ms. Iris and her 2 partners(Mr. Tian and Mr. Yang) in HangZhou city(ZHangZhoug province, China), all 3 Founders are engineers who have more than averaged 30 years of experience. Then because the requirements of business expansion, in 2014, it moved to the current Xihu (West Lake) Dis. Industrial Zone (HangZhou city, ZHangZhoug province, China).

Through our well-known brand ND, CZPT Machinery delivers agricultural solutions to agriculture machinery manufacturer and distributors worldwide through a full line of spiral bevel gearboxes, straight bevel gearboxes, spur gearboxes, drive shafts, sheet metal, hydraulic cylinder, motors, tyre, worm gearboxes, worm operators etc. Products can be customized as request.

We, CZPT machinery established a complete quality management system and sales service network to provide clients with high-quality products and satisfactory service. Our products are sold in 40 provinces and municipalities in China and 36 countries and regions in the world, our main market is the European market.

Certifications

 

 

 

Why choose us?

1) Customization: With a strong R&D team, and we can develop products as required. It only takes up to 7 days for us to design a set of drawings. The production time for new products is usually 50 days or less.

2) Quality: We have our own complete inspection and testing equipment, which can ensure the quality of the products.

3) Capacity: Our annual production capacity is over 500,000 sets, also, we also accept small quantity orders, to meet the needs of different customer’s purchase quantities.

4) Service: We focus on offering high-quality products. Our products are in line with international standards and are mainly exported to Europe, Australia, and other countries and regions.

5) Shipment: We are close to HangZhou and ZheJiang ports, to provide the fastest shipping service.
 

 

FAQ

Q: Are you a trading company or manufacturer?
A: We’re factory and providing gearbox ODM & OEM services for the European market for more than 10 years

Q: Do you provide samples? is it free or extra?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: How long is your delivery time? What is your terms of payment?
A: Generally it is 40-45 days. The time may vary depending on the product and the level of customization.
For standard products, the payment is: 30% T/T in advance,balance before shipment.

Q: What is the exact MOQ or price for your product?
A: As an OEM company, we can provide and adapt our products to a wide range of needs.
Thus, MOQ and price may greatly vary with size, material and further specifications; For instance, costly products or standard products will usually have a lower MOQ. Please contact us with all relevant details to get the most accurate quotation.

If you have another question, please feel free to contact us.

US $20-300
/ Piece
|
50 Pieces

(Min. Order)

###

After-sales Service: Repair
Condition: New
Color: Red, Silver, Yellow, Black
Certification: CE, ISO, BV
Type: Universal Joint
Application Brand: Agricultural Machine

###

Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Materlal and Surface Treatment
Cross shaft Heat treatment of 20Cr2Ni4A forging
Bearing cup 20CrMOTi forging heat treatment
Flange fork  ZG35CrMo steel casting
Spline shaft 42GrMo forging heat treatment
Spline bushing 35CrM0 forging heat treatment
Sleeve body 42CrMo forging
Surface treatment spraying
Flat key, positioning ring 42GrMo forging
US $20-300
/ Piece
|
50 Pieces

(Min. Order)

###

After-sales Service: Repair
Condition: New
Color: Red, Silver, Yellow, Black
Certification: CE, ISO, BV
Type: Universal Joint
Application Brand: Agricultural Machine

###

Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Materlal and Surface Treatment
Cross shaft Heat treatment of 20Cr2Ni4A forging
Bearing cup 20CrMOTi forging heat treatment
Flange fork  ZG35CrMo steel casting
Spline shaft 42GrMo forging heat treatment
Spline bushing 35CrM0 forging heat treatment
Sleeve body 42CrMo forging
Surface treatment spraying
Flat key, positioning ring 42GrMo forging

Different Types of Limiter Torque Offsets

Whether you are looking for an over or offset torque limiter, or you are simply looking for the correct torque measurement device to suit your needs, there are a number of different options available to you.limiter torque

Over-torque limiters

Choosing the right torque limiters can help to protect your machine from damage. These devices are used in sheet metal and textile machinery, printing and converting machines, industrial robots, and conveyors.
Torque limiters are devices that protect equipment from damage caused by overloads. These devices are usually mechanical, but can also be electronic. Electronic overload protection monitors a variety of parameters, including rotational frequency, current, voltage, and pressure. They can also be programmed to monitor temperature.
The most common mechanical torque limiters are shear-pins and slip-clutches. These devices are usually installed in gears, shafts, motors, pumps, or servos. These devices disengage the drive line before an electronic device, preventing damage from accumulated rotational energy.
Torque limiters have also been used for years in marine applications. These devices are installed as close to the point of impact as possible.
Torque limiters have also been installed in servos and stepper motors. They are intended to eliminate mechanical overloads that can cause unplanned downtime. They also prevent damage from misuse or accidents.
Torque limiters are also used in conveyors and other assembly lines. These devices protect against over-torque situations, which can damage drive motors and drive components. These devices are used in woodworking machines, printing and converting machines, and industrial robots. They also provide an effective means of coupling gears and sprockets.
Torque limiters come in a variety of styles and models. To determine which device is right for your application, contact a manufacturer or a specialist. Choosing the right one can help to protect your machine from damage at an affordable cost.
Torque limiters are not designed to operate in a continuous slip environment. They should be selected based on the type of machine you are operating and the torque load you expect to generate. They should also be installed near the point of impact to avoid accidents.
The mechanical torque limiter is the most common type of slip clutch. It uses special springs with negative spring rates to avoid false trips. This design has been improved over the years from the simple slip-clutch.
The electronic overload protection is also an option, especially if you are using more advanced drive systems. It can monitor a variety of parameters, including rotational speed, rotational frequency, current, voltage, and position.limiter torque

Offset torque limiters

Using Limiter Torque Offsets can protect your machinery from overloads. These devices are designed to protect rotating parts. They can be used in a variety of ways. You can mount a pulley or a sprocket in a torque limiter. They can be installed in any machine shop.
Torque Limiters, also called slip clutches, are used to protect rotating components from overloads. They can also be used to protect machines from crashes. These devices use friction disks to transmit force from a driving shaft to a driven member. They can also be used with electronic sensors to protect rotating parts.
A torque limiter, or slip clutch, is a mechanical overload protection device that transmits torque from the driven shaft to the driven member through friction disks. Some torque limiters use friction plates. Others use backstop clutches that transmit torque in reverse. These devices can be used in many applications, including the construction industry, automotive industry, and manufacturing.
Torque Limiters work by disconnecting the drive shaft from the driven member during overloads. This ensures that the rotating components can operate without damage. Torque Limiters are available in a variety of styles and designs. Some limiters are spring-loaded. Some have compression adjustment, which allows them to be reset automatically.
Friction-disc torque limiters are a great option for applications that require constant running. They can be used in applications where a torque limiter may be part of a gearset assembly. They provide moderate adherence to a safe-torque setting. However, they may be susceptible to damage.
The torque limiter is typically the last gearset in the transmission. The drive sprocket must be sized based on the amount of torque that is needed to disengage the drive. A torque limiter can be mounted directly or via an adapter plate. It is important to center the drive sprocket over the bearing. This is done by machining the drive attachment.
Ball detent torque limiters can be used in single-position or multiple-position configurations. They can also be used in hub or hub/sprocket combinations. They can be manually reset, or can be set dynamically.
Using Limiter Torque Offsets is a quick and easy way to protect your equipment. Torque Limiters can be used with a wide range of applications, and you can easily adjust the size to suit your needs.limiter torque

Ball detent torque limiters

Using a torque limiter protects equipment, such as sensitive machinery, from overloads. A torque limiter may be a mechanical device or an electronic device. Both types protect rotating machine components.
A mechanical torque limiter engages with the driven side of a machine through a small groove. A ball or roller is then inserted into the groove. The balls or rollers are then hardened to at least Rc 60. These components are then held in detents on the shaft. The balls and rollers slide out of the detents when the torque limiter experiences overload. The balls and rollers are then re-engaged when the overload is removed.
Some torque limiters use a snap-acting spring to release torque. Others use a pneumatic control system, which uses air pressure to force the ball detent device to disengage. Some systems also offer a random reset device.
Torque limiters are used in a variety of applications, including food and textile processing, packaging, and packaging and transportation. They are also commonly used in sewage treatment plants. They offer a wide variety of options, such as chain couplings, overload detector mechanisms, and various combinations.
A ball detent torque limiter provides a high level of accuracy. Its ability to automatically engage and disengage makes it a good option for applications where accuracy is important. Its design also provides the operator with a reliable torque limiter without needing manual intervention.
Torque limiters have many applications, including limiting transmission torque, protecting sensitive equipment, and controlling the torque of an axis. Some models can also be used in combination with electronic overload protection. Some models feature adjustable overload settings, which automatically disengage the torque limiter when the overload occurs. The torque limiter’s size and configuration should be determined based on the torques experienced by the axis. A torque limiter should also be designed to fully disengage the driven and driving components.
The two main types of torque limiters are mechanical and pneumatic. A pneumatic torque limiter will require a pneumatic control system, which utilizes air pressure to disengage the torque limiter in case of overload. A mechanical torque limiter will engage with the driven side of a machine through balls or rollers that are inserted into sockets on the pressure flange.

Measuring torque limiter output flange

Whether you are designing a new machine or repairing one, you need to know how to measure torque limiter output flange to ensure that your equipment is functioning properly. The torque limiter can help you protect your drive motors and gearboxes from costly damage. These devices are used in industrial robots, conveyors, woodworking machines, and printing and converting machines.
Torque limiters are light in weight and low in cost. They are also easy to install and maintain. When your machine is overloaded, the torque limiter acts as a clutch to disengage the input and output shafts. This reduces the potential for malfunction, and provides a higher level of reliability.
Torque limiters are available in two different types. The friction type uses spring loaded friction disks that slip when the torque exceeds a certain threshold. The other type uses permanent magnets mounted to each shaft. The magnetic torque limiter is a fast acting and effective way to limit torque.
Torque limiters also work with electronic sensors. During an overload condition, the torque limiter will disengage the input and output shafts within fractions of a second. This eliminates the possibility of a mechanism malfunction.
Torque limiters come in many shapes and sizes. The size of the body depends on the torque load and disengagement torque. The basic model features a flange for parallel shafts. However, more advanced models use pneumatic technology and use balls or rollers in sockets. This allows for a higher level of torque setting sensitivity.
Measuring torque limiter output flange requires that you measure the outside diameter of the sprocket. The inside diameter should match the centering diameter of the output flange. For a larger diameter, a tolerance of about half-inch is recommended. You should also check to ensure that the sprocket face is square. This is important for clearance.
Torque limiters are used in industrial robots, assembly lines, and sheet metal processing equipment. They can also be used in textile machinery. They are high in reliability and low in cost. This is why they are used so widely.
Torque limiters are also useful in preventing a situation where only one rudder surface operates. A torque limiter can also be used to prevent torque transmission through axial displacement. This prevents the drive shaft from spinning and causing damage to the test piece.
China Torque Limiters Agricultural Machinery Wide Angle Joint Pto Shaft Wide Angle Joint Pto Shaft for Tractor     ball detent torque limiterChina Torque Limiters Agricultural Machinery Wide Angle Joint Pto Shaft Wide Angle Joint Pto Shaft for Tractor     ball detent torque limiter
editor by czh 2022-12-12

Wide Custom made in China – replacement parts – in Vellore India Angle Joint Tractor Pto Shaft Cover for Power Transmission with top quality

Wide  Custom  made in China - replacement parts -  in Vellore India  Angle Joint Tractor Pto Shaft Cover for Power Transmission with top quality

We – EPG Group the most significant gearbox & motors , torque limiter couplings and gears manufacturing unit in China with 5 different branches. For far more specifics: Cell/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778083988828

Broad angle joint Tractor Pto Shaft Include for Electricity Transmission
one. Tubes or Pipes
We have already got Triangular profile tube and Lemon profile tube for all the series we offer.
And we have some star tube, splined tube and other profile tubes essential by our customers (for a specified sequence). (You should discover that our catalog doesnt include all the products we create)
If you want tubes other than triangular or lemon, remember to supply drawings or photographs.

two.Stop yokes
We have acquired numerous kinds of fast release yokes and plain bore yoke. I will advise the usual sort for your reference.
You can also send out drawings or pictures to us if you are not able to uncover your product in our catalog.

three. Security devices or clutches
I will connect the particulars of safety devices for your reference. We have presently have Cost-free wheel (RA), Ratchet torque limiter(SA), Shear bolt torque limiter(SB), 3types of friction torque limiter (FF,FFS,FCS) and overrunning couplers(adapters) (FAS).

four.For any other much more special requirements with plastic guard, connection method, shade of portray, bundle, and so forth., remember to really feel cost-free to permit me know.

Attributes: 
1. We have been specialised in planning, producing generate shaft, steering coupler shaft, universal joints, which have exported to the United states of america, Europe, Australia and so forth for years 
two. Software to all sorts of standard mechanical situation 
three. Our items are of large intensity and rigidity. 
4. Warmth resistant & Acid resistant 
5. EPT orders are welcomed

Our manufacturing facility is a leading producer of PTO shaft yoke and common joint.

We manufacture large quality PTO yokes for a variety of automobiles, construcWhen a torque overload occurs, the transmitted torque will exceed the established torque position of the Torque Limiter. When this takes place, the frictional drive is no lengthier powerful sufficient to transmit the torque from the driving shaft to the pushed member, and the pushed member slips in between the friction disks. When the torque overload is taken out, the Torque Limiter immediately resets and resumes transmitting torque.tion machinery and tools. All items are made with rotating lighter.

We are presently exporting our merchandise all through the planet, especially to North The us, South The united states, Europe, and Russia. If you are interested in any product, you should do not be reluctant to get in touch with us. We are bathroom ept ept to becoming your suppliers in the near potential.

 

The use of authentic equipment manufacturer’s (OEM) part quantities or logos , e.g. CASE® and John Deere® are for reference reasons only and for indicating product use and compatibility. Our business and the shown substitution parts contained herein are not sponsored, approved, or made by the OEM.

Wide  Custom  made in China - replacement parts -  in Vellore India  Angle Joint Tractor Pto Shaft Cover for Power Transmission with top quality

Wide  Custom  made in China - replacement parts -  in Vellore India  Angle Joint Tractor Pto Shaft Cover for Power Transmission with top quality

Wide  Custom  made in China - replacement parts -  in Vellore India  Angle Joint Tractor Pto Shaft Cover for Power Transmission with top quality

Wide Custom made in China – replacement parts – in Suweon Republic of Korea Angle Joint Pto Shaft Lemon Tube for Driveline Transmission with top quality

Wide  Custom  made in China - replacement parts -  in Suweon Republic of Korea  Angle Joint Pto Shaft Lemon Tube for Driveline Transmission with top quality

We – EPG Team the biggest gearbox & motors , torque limiter couplings and gears manufacturing facility in China with 5 various branches. For more particulars: Cellular/whatsapp/telegram/Kakao us at: 0086~13083988828 13858117778083988828

Extensive angle joint pto shaft lemon tube for driveline transmission 

one. Tubes or Pipes
We’ve currently received Triangular profile tube and Lemon profile tube for all the series we give.
And we have some star tube, splined tube and other profile tubes necessary by our customers (for a specified series). (You should observe that our catalog doesnt contain all the things we create)
If you want tubes other than triangular or lemon, remember to supply drawings HOW DOES A TORQUE LIMITER Perform? Torque Limiters ensure that torque-based mostly forces never ever exceed the established level. By restricting torque forces to what the rotational factors can safely and securely take care of, these areas reduce mechanical overload and failures. They can function independently or in congruence with digital sensors. Sometimes, mechanical torque limiters are known as overload clutches.or images.

two.Stop yokes
We have got several varieties of rapid release yokes and basic bore yoke. I will suggest the common kind for your reference.
You can also send drawings or photos to us if you can not discover your merchandise in our catalog.

three. Safety units or clutches
I will attach the specifics of protection units for your reference. We’ve currently have Cost-free wheel (RA), Ratchet torque limiter(SA), Shear bolt torque limiter(SB), 3types of friction torque limiter (FF,FFS,FCS) and overrunning couplers(adapters) (FAS).

four.For any other far more unique needs with plastic guard, link strategy, shade of portray, package, etc., make sure you come to feel free to enable me know.

Attributes: 
1. We have been specialised in creating, manufacturing push shaft, steering coupler shaft, common joints, which have exported to the United states of america, Europe, Australia etc for years 
two. Software to all types of general mechanical situation 
3. Our items are of large intensity and rigidity. 
4. Heat resistant & Acid resistant 
five. EPT orders are welcomed

Our manufacturing facility is a foremost maker of PTO shaft yoke and common joint.

We manufacture higher quality PTO yokes for various automobiles, building machinery and tools. All products are created with rotating lighter.

We are at present exporting our merchandise throughout the globe, specifically to North The us, South The united states, Europe, and Russia. If you are fascinated in any product, remember to do not hesitate to make contact with us. We are bathroom ept ept to turning into your suppliers in the near potential.

 

The use of first products manufacturer’s (OEM) portion quantities or trademarks , e.g. CASE® and John Deere® are for reference reasons only and for indicating solution use and compatibility. Our firm and the detailed replacement elements contained herein are not sponsored, approved, or created by the OEM.

Wide  Custom  made in China - replacement parts -  in Suweon Republic of Korea  Angle Joint Pto Shaft Lemon Tube for Driveline Transmission with top quality

Wide  Custom  made in China - replacement parts -  in Suweon Republic of Korea  Angle Joint Pto Shaft Lemon Tube for Driveline Transmission with top quality

Wide  Custom  made in China - replacement parts -  in Suweon Republic of Korea  Angle Joint Pto Shaft Lemon Tube for Driveline Transmission with top quality